login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157442
a(n) = 14641*n^2 - 24684*n + 10405.
3
362, 19601, 68122, 145925, 253010, 389377, 555026, 749957, 974170, 1227665, 1510442, 1822501, 2163842, 2534465, 2934370, 3363557, 3822026, 4309777, 4826810, 5373125, 5948722, 6553601, 7187762, 7851205, 8543930, 9265937
OFFSET
1,1
COMMENTS
The identity (14641*n^2 - 24684*n + 10405)^2 - (121*n^2 - 204*n + 86)*(1331*n - 1122)^2 = 1 can be written as a(n)^2 - A157440(n)*A157441(n)^2 = 1. - Vincenzo Librandi, Jan 29 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=362, a(2)=19601, a(3)=68122. - Harvey P. Dale, Oct 22 2011
G.f.: x*(-10405*x^2 - 18515*x - 362)/(x-1)^3. - Harvey P. Dale, Oct 22 2011
a(n) = A017485(11*n-10)^2 + 1. - Bruno Berselli, Jan 29 2012
MATHEMATICA
Table[14641n^2-24684n+10405, {n, 30}] (* or *) LinearRecurrence[{3, -3, 1}, {362, 19601, 68122}, 30]
PROG
(Magma) I:=[362, 19601, 68122]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(14641*n^2 - 24684*n + 10405", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved