OFFSET
1,1
COMMENTS
The identity (14641*n^2 - 24684*n + 10405)^2 - (121*n^2 - 204*n + 86)*(1331*n - 1122)^2 = 1 can be written as a(n)^2 - A157440(n)*A157441(n)^2 = 1. - Vincenzo Librandi, Jan 29 2012
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Vincenzo Librandi, X^2-AY^2=1
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=362, a(2)=19601, a(3)=68122. - Harvey P. Dale, Oct 22 2011
G.f.: x*(-10405*x^2 - 18515*x - 362)/(x-1)^3. - Harvey P. Dale, Oct 22 2011
a(n) = A017485(11*n-10)^2 + 1. - Bruno Berselli, Jan 29 2012
MATHEMATICA
Table[14641n^2-24684n+10405, {n, 30}] (* or *) LinearRecurrence[{3, -3, 1}, {362, 19601, 68122}, 30]
PROG
(Magma) I:=[362, 19601, 68122]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
(PARI) for(n=1, 40, print1(14641*n^2 - 24684*n + 10405", ")); \\ Vincenzo Librandi, Jan 29 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved