login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157053
Number of integer sequences of length n+1 with sum zero and sum of absolute values 8.
1
2, 24, 162, 780, 2970, 9492, 26474, 66222, 151560, 322190, 643632, 1219374, 2206932, 3838590, 6447660, 10501172, 16639974, 25727292, 38906870, 57671880, 83945862, 120177024, 169447302, 235597650, 323371100, 438575202, 588265524, 780951962, 1026829680
OFFSET
1,1
LINKS
FORMULA
a(n) = T(n,4); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
G.f.: 2*x*(1+3*x+9*x^2+9*x^3+9*x^4+3*x^5+x^6)/(1-x)^9. - Colin Barker, Mar 17 2012
a(n) = n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576. - Bruno Berselli, Mar 17 2012
E.g.f.: (x/576)*(1152 +5760*x +9216*x^2 +6432*x^3 +2208*x^4 +384*x^5 +32*x^6 +x^7)*exp(x). - G. C. Greubel, Jan 23 2022
MATHEMATICA
Table[n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576, {n, 50}] (* G. C. Greubel, Jan 23 2022 *)
PROG
(Sage) [n*(n+1)*(n^2+n+6)*(n^4 +2*n^3 +23*n^2 +22*n +24)/576 for n in (1..50)] # G. C. Greubel, Jan 23 2022
CROSSREFS
Sequence in context: A241623 A288443 A108476 * A279853 A052411 A073066
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved