login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157029
1
1, 3, 7, 17, 39, 89, 203, 459, 1029, 2299, 5129, 11409, 25273, 55787, 122875, 270239, 593331, 1299883, 2841243, 6197855, 13499235, 29366411, 63809311, 138466835, 300036895, 649186659, 1402796793, 3027908077, 6529611587, 14068804905
OFFSET
1,2
COMMENTS
Equals row sums of triangle A157028.
FORMULA
G.f.: Sum_{n>=1} x^n * (1-x)^(n*(n-1)) / ((1-x)^n - x^n)^n. - Paul D. Hanna, Mar 26 2018
G.f.: Sum_{n>=1} x^n/(1-x)^n / (1 - x^n/(1-x)^n)^n. - Paul D. Hanna, Mar 26 2018
EXAMPLE
a(4) = 17 = (1, 3, 3, 1) dot (1, 2, 2, 4) = (1 + 6 + 6 + 4). a(4) = 17 = sum of row 4 terms, triangle A157028: (8 + 5 + 3 + 1).
G.f.: A(x) = x + 3*x^2 + 7*x^3 + 17*x^4 + 39*x^5 + 89*x^6 + 203*x^7 + 459*x^8 + 1029*x^9 + 2299*x^10 + ...
such that
A(x) = x/((1-x) - x) + x^2*(1-x)^2/((1-x)^2 - x^2)^2 + x^3*(1-x)^6/((1-x)^3 - x^3)^3 + x^4*(1-x)^12/((1-x)^4 - x^4)^4 + x^5*(1-x)^20/((1-x)^5 - x^5)^5 + ...
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Apr 07 2009
STATUS
approved