login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156864
Triangle read by rows: T(n, k) = 2^k - binomial(n+1, k+1) - ((2*k-n)/(k+1)) * binomial(n+1, k).
1
0, -1, 1, -2, -2, 4, -3, -6, -2, 11, -4, -11, -12, 1, 26, -5, -17, -27, -19, 11, 57, -6, -24, -48, -54, -24, 36, 120, -7, -32, -76, -110, -94, -20, 92, 247, -8, -41, -112, -194, -220, -146, 8, 211, 502, -9, -51, -157, -314, -430, -398, -202, 91, 457, 1013
OFFSET
1,4
COMMENTS
Row sums are zero.
FORMULA
T(n, k) = 2^k - binomial(n+1, k+1) - ((2*k-n)/(k+1)) * binomial(n+1, k).
From G. C. Greubel, Dec 01 2019: (Start)
T(n, n) = 2^n - n - 1 = A000295(n).
Sum_{k=1..n-1} T(n,k) = - A000295(n). (End)
EXAMPLE
Triangle begins as:
0;
-1, 1;
-2, -2, 4;
-3, -6, -2, 11;
-4, -11, -12, 1, 26;
-5, -17, -27, -19, 11, 57;
-6, -24, -48, -54, -24, 36, 120;
-7, -32, -76, -110, -94, -20, 92, 247;
-8, -41, -112, -194, -220, -146, 8, 211, 502;
-9, -51, -157, -314, -430, -398, -202, 91, 457, 1013;
-10, -62, -212, -479, -760, -860, -664, -239, 292, 958, 2036;
MAPLE
b:=binomial; seq(seq( 2^k -b(n+1, k+1) -((2*k-n)/(k+1))*b(n+1, k), k=1..n), n=1..12); # G. C. Greubel, Dec 01 2019
MATHEMATICA
T[n_, k_]:= 2^k - Binomial[n+1, k+1] - ((2*k-n)/(k+1))*Binomial[n+1, k]; Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(PARI) T(n, k) = 2^k -binomial(n+1, k+1) -((2*k-n)/(k+1))*binomial(n+1, k); \\ G. C. Greubel, Dec 01 2019
(Magma) B:=Binomial; [2^k -B(n+1, k+1) -((2*k-n)/(k+1))*B(n+1, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Dec 01 2019
(Sage) b=binomial; [[2^k -b(n+1, k+1) -((2*k-n)/(k+1))*b(n+1, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Dec 01 2019
(GAP) B:=Binomial;; Flat(List([1..12], n-> List([1..n], k-> 2^k - B(n+1, k+1) - ((2*k-n)/(k+1))*B(n+1, k) ))); # G. C. Greubel, Dec 01 2019
CROSSREFS
Sequence in context: A328835 A076435 A257010 * A059975 A087656 A122811
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 17 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 01 2019
STATUS
approved