OFFSET
0,3
COMMENTS
Row sums are 2^n: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
T(n, k) = 2^k - binomial(n, k+1).
From G. C. Greubel, Nov 30 2019: (Start)
T(n, n) = 2^n.
Sum_{k=0..n-1} T(n,k) = 0. (End)
EXAMPLE
Triangle begins as:
1;
0, 2;
-1, 1, 4;
-2, -1, 3, 8;
-3, -4, 0, 7, 16;
-4, -8, -6, 3, 15, 32;
-5, -13, -16, -7, 10, 31, 64;
-6, -19, -31, -27, -5, 25, 63, 128;
-7, -26, -52, -62, -40, 4, 56, 127, 256;
-8, -34, -80, -118, -110, -52, 28, 119, 255, 512;
-9, -43, -116, -202, -236, -178, -56, 83, 246, 511, 1024;
MAPLE
seq(seq( 2^k - binomial(n, k+1), k=0..n), n=0..10); # G. C. Greubel, Nov 30 2019
MATHEMATICA
Table[2^k -Binomial[n, k+1], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = 2^k - binomial(n, k+1); \\ G. C. Greubel, Nov 30 2019
(Magma) [2^k - Binomial(n, k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 30 2019
(Sage) [[2^k - binomial(n, k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 30 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> 2^k - Binomial(n, k+1) ))); # G. C. Greubel, Nov 30 2019
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 17 2009
STATUS
approved