login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156770
1 followed by least greater integer such that concatenation of a(n-1) and a(n) is prime.
2
1, 3, 7, 9, 11, 17, 21, 29, 39, 43, 49, 51, 53, 81, 91, 99, 103, 123, 127, 133, 153, 191, 227, 231, 241, 249, 253, 273, 281, 291, 293, 311, 323, 333, 337, 339, 341, 347, 359, 377, 387, 397, 427, 429, 431, 441, 443, 453, 461, 467, 471, 481, 489, 493, 523, 541
OFFSET
1,2
LINKS
EXAMPLE
The term immediately after 17 is 21 because 1721 is the first prime greater than 1717.
MAPLE
cat2 := proc(a, b) a*10^(max(1, ilog10(b)+1))+b ; end: A156770 := proc(n) option remember ; local a; if n = 1 then 1; else for a from procname(n-1)+1 do if isprime( cat2(procname(n-1), a) ) then RETURN(a) ; fi; od: fi; end: seq(A156770(n), n=1..80) ; # R. J. Mathar, Feb 20 2009
MATHEMATICA
nxt[n_]:=Module[{k=n+2, idn=IntegerDigits[n]}, While[!PrimeQ[ FromDigits[ Join[ idn, IntegerDigits[ k]]]], k = k+2]; k]; NestList[nxt, 1, 60] (* Harvey P. Dale, Jul 09 2015 *)
PROG
(Python)
from sympy import isprime
from itertools import islice
def agen():
an = 1
while True:
yield an
s, an = str(an), an+1
while not isprime(int(s+str(an))): an += 1
print(list(islice(agen(), 56))) # Michael S. Branicky, Oct 17 2022
CROSSREFS
Sequence in context: A275602 A173699 A287202 * A088630 A129747 A354570
KEYWORD
nonn,base
AUTHOR
Gerald Hillier, Feb 15 2009, Mar 13 2010
EXTENSIONS
More terms from R. J. Mathar, Feb 20 2009
STATUS
approved