

A354570


Ordered odd leg lengths k (listed with multiplicity) of primitive Pythagorean triangles such that all prime factors of k are congruent to 3 (mod 4).


1



3, 7, 9, 11, 19, 21, 21, 23, 27, 31, 33, 33, 43, 47, 49, 57, 57, 59, 63, 63, 67, 69, 69, 71, 77, 77, 79, 81, 83, 93, 93, 99, 99, 103, 107, 121, 127, 129, 129, 131, 133, 133, 139, 141, 141, 147, 147, 151, 161, 161, 163, 167, 171, 171, 177, 177, 179, 189, 189, 191
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: lim_{n>oo} a(n)/n = Pi. Also, lim_{n>oo} A354571(n)/n = Pi.


REFERENCES

Lothar Selle, Kleines Handbuch Pythagoreische Zahlentripel, Books on Demand, 4th impression 2022, chapter 2.2.1; see chapter 2.3.10 for identity of lim_(n>oo) A354571(n)/n.


LINKS



EXAMPLE

3 is a term: 3^2 + 4^2 = 5^2, so the triangle with sides (3,4,5) is a Pythagorean triangle; GCD(3,4,5) = 1, so it is primitive; and the odd leg length, 3, has no prime factors p that are not congruent to 3 (mod 4).
5 is not a term: it is the odd leg length of the primitive Pythagorean triangle (5,12,13), but 5 (a prime) == 1 (mod 4).
21 (whose prime factors are 3 and 7, both of which are congruent to 3 (mod 4)) is listed twice because it is the odd leg length of two primitive Pythagorean triangles ((20,21,29) and (21,220,221)).


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



