The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156166 Numbers k > 0 such that (10^(k+2) + 666)*10^k + 1 is prime. 4
 1, 14, 43, 507, 609, 2473, 2624, 28292, 181299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Or, indices of primes in the sequence 16661, 1066601, 100666001, 10006660001,... Ondrejka calls these "beastly palindromic primes". In popular culture: the number generated by a(2), 1000000000000066600000000000001, also known as Belphegor's Prime, was used as a plot device in Episode "Just a Regular Irregular" of the "Elementary" TV series (first aired Nov/13/2014). - Serge Batalov, Nov 15 2014 LINKS Table of n, a(n) for n=1..9. C. Caldwell, H. Dubner (Eds): The top ten prime numbers: from the unpublished collections of R. Ondrejka (May 2001), p. 32 Internet Movie Database, Elementary: Season 3, Episode 3: Just a Regular Irregular Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001 Eric Weisstein's World of Mathematics, Belphegor Prime Eric Weisstein's World of Mathematics, Integer Sequence Primes Wikipedia, Belphegor's prime FORMULA a(n) = A232448(n) + 1. MAPLE A156166:=n->`if`(isprime((10^(n+2)+666)*10^n+1), n, NULL): seq(A156166(n), n=1..10^3); # Wesley Ivan Hurt, Nov 16 2014 MATHEMATICA Select[Range[10^3], PrimeQ[(10^(# + 2) + 666)*10^# + 1] &] (* Arkadiusz Wesolowski, Sep 08 2011 *) PROG (PARI) for( n=1, 9999, ispseudoprime((10^(n+2)+666)*10^n+1) & print1(n", ")) (Magma) [n: n in [1..500] | IsPrime((10^(n+2)+666)*10^n+1)]; // Vincenzo Librandi, Nov 15 2014 CROSSREFS Cf. A082700 and search results for 16661. Cf. A232448 (a(n) - 1). Sequence in context: A302665 A041380 A151990 * A064125 A089031 A265152 Adjacent sequences: A156163 A156164 A156165 * A156167 A156168 A156169 KEYWORD more,nonn,base AUTHOR M. F. Hasler, Feb 10 2009 EXTENSIONS a(8) = 28292 (discovered on Jan 05 2004, by Daniel Heuer), Arkadiusz Wesolowski, Mar 16 2011 a(9) = 181299 from Serge Batalov, Nov 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)