login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156006
Triangle, read by rows, T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.
1
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 10, 8, 1, 1, 18, 23, 23, 18, 1, 1, 47, 56, 56, 56, 47, 1, 1, 138, 152, 138, 138, 152, 138, 1, 1, 436, 456, 372, 330, 372, 456, 436, 1, 1, 1438, 1465, 1111, 847, 847, 1111, 1465, 1438, 1, 1, 4871, 4906, 3586, 2431, 2002, 2431, 3586, 4906, 4871, 1
OFFSET
0,5
COMMENTS
Row sums are A068875(n): {1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, ...}.
FORMULA
T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.
From G. C. Greubel, Dec 02 2019: (Start)
T(n, k) = ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n), with T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A068875(n).
Sum_{k=1..n-1} T(n,k) = A128634(n), n >= 1. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 10, 8, 1;
1, 18, 23, 23, 18, 1;
1, 47, 56, 56, 56, 47, 1;
1, 138, 152, 138, 138, 152, 138, 1;
1, 436, 456, 372, 330, 372, 456, 436, 1;
1, 1438, 1465, 1111, 847, 847, 1111, 1465, 1438, 1;
1, 4871, 4906, 3586, 2431, 2002, 2431, 3586, 4906, 4871, 1;
MAPLE
seq(seq( `if`(k=n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)), k=0..n), n=0..10); # G. C. Greubel, Dec 02 2019
MATHEMATICA
T[n_, k_]:= If[n==0, 1, ((n-k)/(n+k))*Binomial[n+k, n] + (k/(2*n-k))*Binomial[2*n -k, n]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = if(k==n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n) ); \\ G. C. Greubel, Dec 02 2019
(Magma)
function T(n, k)
if k eq n then return 1;
else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 02 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==n): return 1
else: return ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 02 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
fi; end;
Flat(List([1..15], n-> List([1..n], k-> T(n, k) )));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 01 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 02 2019
STATUS
approved