Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:41
%S 1,1,1,1,2,1,1,4,4,1,1,8,10,8,1,1,18,23,23,18,1,1,47,56,56,56,47,1,1,
%T 138,152,138,138,152,138,1,1,436,456,372,330,372,456,436,1,1,1438,
%U 1465,1111,847,847,1111,1465,1438,1,1,4871,4906,3586,2431,2002,2431,3586,4906,4871,1
%N Triangle, read by rows, T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.
%C Row sums are A068875(n): {1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, ...}.
%H G. C. Greubel, <a href="/A156006/b156006.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.
%F From _G. C. Greubel_, Dec 02 2019: (Start)
%F T(n, k) = ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n), with T(n,n) = 1.
%F Sum_{k=0..n} T(n, k) = A068875(n).
%F Sum_{k=1..n-1} T(n,k) = A128634(n), n >= 1. (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 4, 4, 1;
%e 1, 8, 10, 8, 1;
%e 1, 18, 23, 23, 18, 1;
%e 1, 47, 56, 56, 56, 47, 1;
%e 1, 138, 152, 138, 138, 152, 138, 1;
%e 1, 436, 456, 372, 330, 372, 456, 436, 1;
%e 1, 1438, 1465, 1111, 847, 847, 1111, 1465, 1438, 1;
%e 1, 4871, 4906, 3586, 2431, 2002, 2431, 3586, 4906, 4871, 1;
%p seq(seq( `if`(k=n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)), k=0..n), n=0..10); # _G. C. Greubel_, Dec 02 2019
%t T[n_, k_]:= If[n==0, 1, ((n-k)/(n+k))*Binomial[n+k, n] + (k/(2*n-k))*Binomial[2*n -k, n]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
%o (PARI) T(n,k) = if(k==n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n) ); \\ _G. C. Greubel_, Dec 02 2019
%o (Magma)
%o function T(n,k)
%o if k eq n then return 1;
%o else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
%o end if; return T; end function;
%o [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 02 2019
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k==n): return 1
%o else: return ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)
%o [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 02 2019
%o (GAP)
%o T:= function(n,k)
%o if k=n then return 1;
%o else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
%o fi; end;
%o Flat(List([1..15], n-> List([1..n], k-> T(n,k) )));
%Y Cf. A009799, A068875, A128634.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Feb 01 2009
%E Edited by _G. C. Greubel_, Dec 02 2019