login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155897 Square matrix T(m,n)=1 if (2m+1)^n-2 is prime, 0 otherwise; read by antidiagonals. 1
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In some sense a "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers (> 1) minus 2. Since even powers obviously correspond to an odd power of the base squared, it is sufficient to consider only odd powers, cf. A155899.

LINKS

Table of n, a(n) for n=1..105.

PROG

(PARI) T = matrix( 19, 19, m, n, isprime((2*m+1)^n-2)) ;

A155897 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j, i-j+1])))

CROSSREFS

Cf. A084714, A128472, A094786, A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461.

Sequence in context: A051105 A284929 A286746 * A144610 A188068 A181632

Adjacent sequences:  A155894 A155895 A155896 * A155898 A155899 A155900

KEYWORD

easy,nonn,tabl

AUTHOR

M. F. Hasler, Feb 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 22:01 EDT 2022. Contains 357063 sequences. (Running on oeis4.)