login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155744
Triangle T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.
1
3, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 48, 143, 48, 1, 1, 274, 1835, 1835, 274, 1, 1, 1935, 23649, 51075, 23649, 1935, 1, 1, 15861, 310639, 1195999, 1195999, 310639, 15861, 1, 1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1, 1, 1491876, 59942994, 535933124, 1510548249, 1510548249, 535933124, 59942994, 1491876, 1
OFFSET
0,1
FORMULA
T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2*n! + A342111(n). - G. C. Greubel, Jun 05 2021
EXAMPLE
3;
1, 1;
1, 3, 1;
1, 11, 11, 1;
1, 48, 143, 48, 1;
1, 274, 1835, 1835, 274, 1;
1, 1935, 23649, 51075, 23649, 1935, 1;
1, 15861, 310639, 1195999, 1195999, 310639, 15861, 1;
1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1;
MATHEMATICA
T[n_, k_] = (-1)^(n-k)*StirlingS1[n, k] + (-1)^k*StirlingS1[n, n-k] + (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
PROG
(Magma)
A155744:= func< n, k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) + (-1)^k*StirlingFirst(n, n-k) + (-1)^(n-k)*StirlingFirst(n, k) >;
[A155744(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
(Sage)
def A155744(n, k): return stirling_number1(n, k)*stirling_number1(n, n-k) + stirling_number1(n, k) + stirling_number1(n, n-k)
flatten([[A155744(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 26 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 05 2021
STATUS
approved