OFFSET
0,2
COMMENTS
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are intersecting. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Index entries for linear recurrences with constant coefficients, signature (8,-19,12).
FORMULA
G.f.: 1/(1-4*x) - 1/(1-3*x) + 1/(1-x).
E.g.f.: exp(4*x) - exp(3*x) + exp(x).
a(n) = 7*a(n-1)-12*a(n-2)+6 with a(0)=1, a(1)=2. - Vincenzo Librandi, Jul 21 2010
MATHEMATICA
Table[4^n-3^n+1, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
LinearRecurrence[{8, -19, 12}, {1, 2, 8}, 30] (* Harvey P. Dale, Sep 30 2018 *)
PROG
(PARI) a(n)=4^n-3^n+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 26 2009
STATUS
approved