login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155609
a(n) = 4^n - 3^n + 1.
11
1, 2, 8, 38, 176, 782, 3368, 14198, 58976, 242462, 989528, 4017158, 16245776, 65514542, 263652488, 1059392918, 4251920576, 17050729022, 68332056248, 273715645478, 1096024843376, 4387586157902, 17560804984808, 70274600998838
OFFSET
0,2
COMMENTS
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are intersecting. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
FORMULA
G.f.: 1/(1-4*x) - 1/(1-3*x) + 1/(1-x).
E.g.f.: exp(4*x) - exp(3*x) + exp(x).
a(n) = 7*a(n-1)-12*a(n-2)+6 with a(0)=1, a(1)=2. - Vincenzo Librandi, Jul 21 2010
MATHEMATICA
Table[4^n-3^n+1, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
LinearRecurrence[{8, -19, 12}, {1, 2, 8}, 30] (* Harvey P. Dale, Sep 30 2018 *)
PROG
(PARI) a(n)=4^n-3^n+1 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Jan 26 2009
STATUS
approved