login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n - 3^n + 1.
11

%I #28 Sep 30 2018 17:29:56

%S 1,2,8,38,176,782,3368,14198,58976,242462,989528,4017158,16245776,

%T 65514542,263652488,1059392918,4251920576,17050729022,68332056248,

%U 273715645478,1096024843376,4387586157902,17560804984808,70274600998838

%N a(n) = 4^n - 3^n + 1.

%C Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are intersecting. Then a(n) = |R|. - _Ross La Haye_, Mar 19 2009

%H Ross La Haye, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/LaHaye/lahaye5.html">Binary Relations on the Power Set of an n-Element Set</a>, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F G.f.: 1/(1-4*x) - 1/(1-3*x) + 1/(1-x).

%F E.g.f.: exp(4*x) - exp(3*x) + exp(x).

%F a(n) = 7*a(n-1)-12*a(n-2)+6 with a(0)=1, a(1)=2. - _Vincenzo Librandi_, Jul 21 2010

%t Table[4^n-3^n+1,{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011 *)

%t LinearRecurrence[{8,-19,12},{1,2,8},30] (* _Harvey P. Dale_, Sep 30 2018 *)

%o (PARI) a(n)=4^n-3^n+1 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A155596, A155597, A155598, A155599, A155600, A155601, A155602, A155603, A155604, A155605, A155606, A155607, A155608.

%K nonn,easy

%O 0,2

%A _Mohammad K. Azarian_, Jan 26 2009