login
A155095
Numbers k such that k^2 == -1 (mod 17).
7
4, 13, 21, 30, 38, 47, 55, 64, 72, 81, 89, 98, 106, 115, 123, 132, 140, 149, 157, 166, 174, 183, 191, 200, 208, 217, 225, 234, 242, 251, 259, 268, 276, 285, 293, 302, 310, 319, 327, 336, 344, 353, 361, 370, 378, 387, 395, 404, 412, 421, 429, 438, 446, 455
OFFSET
1,1
COMMENTS
The first pair (a,b) is such that a+b=p, a*b=p*h+1, with h<=(p-1)/4; other pairs are given by(a+kp, b+kp), k=1,2,3...
Numbers congruent to {4, 13} mod 17. - Amiram Eldar, Feb 27 2023
FORMULA
From M. F. Hasler, Jun 16 2010: (Start)
a(n) = 4*(-1)^(n+1) + 17*floor(n/2).
a(2k+1) = 17 k + a(1), a(2k) = 17 k - a(1), with a(1) = A002314(3) since 17 = A002144(3).
a(n) = a(n-2) + 17 for all n > 2. (End)
From Bruno Berselli, Sep 26 2010: (Start)
G.f.: x*(4+9*x+4*x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = (34*n + (-1)^n - 17)/4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(9*Pi/34)*Pi/17. - Amiram Eldar, Feb 27 2023
MATHEMATICA
Select[Range[500], PowerMod[#, 2, 17]==16&] (* or *) LinearRecurrence[ {1, 1, -1}, {4, 13, 21}, 60] (* Harvey P. Dale, Jun 25 2011 *)
PROG
(PARI) A155095(n)=n\2*17-4*(-1)^n /* M. F. Hasler, Jun 16 2010 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 20 2009
EXTENSIONS
Terms checked & minor edits by M. F. Hasler, Jun 16 2010
STATUS
approved