The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154869 A triangular sequence: T(n,m) = t1(n,m) + t1(n,n-m) where t1(n,m) = -Sum_{j=0..m+1} (-1)^j * t0(n + 2, j) * (m - j + 1)^(n + 1) and t0(n,m) = Sum_{j=0..m+1} (-1)^j * binomial(n + 2, j) * (m - j + 1)^(n + 1). 0
 6, 26, 26, 230, 100, 230, 3092, 857, 857, 3092, 53032, 13671, 4816, 13671, 53032, 1094774, 285588, 64514, 64514, 285588, 1094774, 26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826, 728697032, 195578147, 43758387, 8678237 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are: 6, 52, 560, 7898, 138222, 2889752, 70316640, 1953423606, 61038674510, 2119955154436, 81049092159048, ... The t0 numbers in the name are the Eulerian triangle A008292. - Sean A. Irvine, Mar 01 2020 LINKS Table of n, a(n) for n=0..31. FORMULA t0(n,m) = Sum_{j=0..m+1} (-1)^j*binomial(n + 2, j) * (m - j + 1)^(n + 1); t1(n,m) = -Sum_{j=0..m+1} (-1)^j* t0(n + 2, j) * (m - j + 1)^(n + 1); T(n,m) = t1(n,m) + t1(n,n-m). Equivalently, t1(n,m) = (1/(n+4)) * Sum_{j=0..m} (j+2) * binomial(n+4,j+2) * (m-j+1)^(n+1). - Sean A. Irvine, Mar 03 2020 EXAMPLE Triangle begins: 6; 26, 26; 230, 100, 230; 3092, 857, 857, 3092; 53032, 13671, 4816, 13671, 53032; 1094774, 285588, 64514, 64514, 285588, 1094774; 26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826; 728697032, 195578147, 43758387, 8678237, 8678237, 43758387, 195578147, 728697032; MAPLE t0 := proc(n, m) option remember; sum(((-1)^j)*binomial(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1) end proc: t := proc(n, m) option remember; - sum(((-1)^j)*t0(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1) end proc: seq(seq(t(n, m) + t(n, n - m), m = 0..n), n=0..10); # Yu-Sheng Chang and Georg Fischer, Feb 03 2020 MATHEMATICA t0[n_, m_] := Sum[(-1)^j*Binomial[n+2, j]*(-j + m + 1)^(n+1), {j, 0, m+1}]; t[n_, m_] := -Sum[((-1)^(2*j + 1)*(j + 2)*Binomial[n + 4, j + 2]*(-j + m + 1)^(n + 1))/(n + 4), {j, 0, m + 1}]; Table[Table[t[n, n - m] + t[n, m], {m, 0, n}], {n, 0, 10}] // Flatten (* edited by Jean-François Alcover, Mar 14 2020 *) CROSSREFS Sequence in context: A337400 A036175 A239178 * A043354 A023727 A045255 Adjacent sequences: A154866 A154867 A154868 * A154870 A154871 A154872 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Jan 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 04:55 EST 2023. Contains 367662 sequences. (Running on oeis4.)