login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154869 A triangular sequence: T(n,m) = t1(n,m) + t1(n,n-m) where t1(n,m) = -Sum_{j=0..m+1} (-1)^j * t0(n + 2, j) * (m - j + 1)^(n + 1) and t0(n,m) = Sum_{j=0..m+1} (-1)^j * binomial(n + 2, j) * (m - j + 1)^(n + 1). 0
6, 26, 26, 230, 100, 230, 3092, 857, 857, 3092, 53032, 13671, 4816, 13671, 53032, 1094774, 285588, 64514, 64514, 285588, 1094774, 26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826, 728697032, 195578147, 43758387, 8678237 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Row sums are: 6, 52, 560, 7898, 138222, 2889752, 70316640, 1953423606, 61038674510, 2119955154436, 81049092159048, ...
The t0 numbers in the name are the Eulerian triangle A008292. - Sean A. Irvine, Mar 01 2020
LINKS
FORMULA
t0(n,m) = Sum_{j=0..m+1} (-1)^j*binomial(n + 2, j) * (m - j + 1)^(n + 1);
t1(n,m) = -Sum_{j=0..m+1} (-1)^j* t0(n + 2, j) * (m - j + 1)^(n + 1);
T(n,m) = t1(n,m) + t1(n,n-m).
Equivalently, t1(n,m) = (1/(n+4)) * Sum_{j=0..m} (j+2) * binomial(n+4,j+2) * (m-j+1)^(n+1). - Sean A. Irvine, Mar 03 2020
EXAMPLE
Triangle begins:
6;
26, 26;
230, 100, 230;
3092, 857, 857, 3092;
53032, 13671, 4816, 13671, 53032;
1094774, 285588, 64514, 64514, 285588, 1094774;
26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826;
728697032, 195578147, 43758387, 8678237, 8678237, 43758387, 195578147, 728697032;
MAPLE
t0 := proc(n, m) option remember;
sum(((-1)^j)*binomial(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1)
end proc:
t := proc(n, m) option remember;
- sum(((-1)^j)*t0(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1)
end proc:
seq(seq(t(n, m) + t(n, n - m), m = 0..n), n=0..10);
# Yu-Sheng Chang and Georg Fischer, Feb 03 2020
MATHEMATICA
t0[n_, m_] := Sum[(-1)^j*Binomial[n+2, j]*(-j + m + 1)^(n+1), {j, 0, m+1}];
t[n_, m_] := -Sum[((-1)^(2*j + 1)*(j + 2)*Binomial[n + 4, j + 2]*(-j + m + 1)^(n + 1))/(n + 4), {j, 0, m + 1}];
Table[Table[t[n, n - m] + t[n, m], {m, 0, n}], {n, 0, 10}] // Flatten (* edited by Jean-François Alcover, Mar 14 2020 *)
CROSSREFS
Sequence in context: A337400 A036175 A239178 * A043354 A023727 A045255
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:55 EST 2023. Contains 367662 sequences. (Running on oeis4.)