login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154869
A triangular sequence: T(n,m) = t1(n,m) + t1(n,n-m) where t1(n,m) = -Sum_{j=0..m+1} (-1)^j * t0(n + 2, j) * (m - j + 1)^(n + 1) and t0(n,m) = Sum_{j=0..m+1} (-1)^j * binomial(n + 2, j) * (m - j + 1)^(n + 1).
0
6, 26, 26, 230, 100, 230, 3092, 857, 857, 3092, 53032, 13671, 4816, 13671, 53032, 1094774, 285588, 64514, 64514, 285588, 1094774, 26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826, 728697032, 195578147, 43758387, 8678237
OFFSET
0,1
COMMENTS
Row sums are: 6, 52, 560, 7898, 138222, 2889752, 70316640, 1953423606, 61038674510, 2119955154436, 81049092159048, ...
The t0 numbers in the name are the Eulerian triangle A008292. - Sean A. Irvine, Mar 01 2020
FORMULA
t0(n,m) = Sum_{j=0..m+1} (-1)^j*binomial(n + 2, j) * (m - j + 1)^(n + 1);
t1(n,m) = -Sum_{j=0..m+1} (-1)^j* t0(n + 2, j) * (m - j + 1)^(n + 1);
T(n,m) = t1(n,m) + t1(n,n-m).
Equivalently, t1(n,m) = (1/(n+4)) * Sum_{j=0..m} (j+2) * binomial(n+4,j+2) * (m-j+1)^(n+1). - Sean A. Irvine, Mar 03 2020
EXAMPLE
Triangle begins:
6;
26, 26;
230, 100, 230;
3092, 857, 857, 3092;
53032, 13671, 4816, 13671, 53032;
1094774, 285588, 64514, 64514, 285588, 1094774;
26402826, 7001142, 1517286, 474132, 1517286, 7001142, 26402826;
728697032, 195578147, 43758387, 8678237, 8678237, 43758387, 195578147, 728697032;
MAPLE
t0 := proc(n, m) option remember;
sum(((-1)^j)*binomial(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1)
end proc:
t := proc(n, m) option remember;
- sum(((-1)^j)*t0(n + 2, j)*(m - j + 1)^(n + 1), j = 0..m+1)
end proc:
seq(seq(t(n, m) + t(n, n - m), m = 0..n), n=0..10);
# Yu-Sheng Chang and Georg Fischer, Feb 03 2020
MATHEMATICA
t0[n_, m_] := Sum[(-1)^j*Binomial[n+2, j]*(-j + m + 1)^(n+1), {j, 0, m+1}];
t[n_, m_] := -Sum[((-1)^(2*j + 1)*(j + 2)*Binomial[n + 4, j + 2]*(-j + m + 1)^(n + 1))/(n + 4), {j, 0, m + 1}];
Table[Table[t[n, n - m] + t[n, m], {m, 0, n}], {n, 0, 10}] // Flatten (* edited by Jean-François Alcover, Mar 14 2020 *)
CROSSREFS
Sequence in context: A337400 A036175 A239178 * A043354 A023727 A045255
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 16 2009
STATUS
approved