login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154552
Greater of two consecutive primes, p < q, such that both p*q+p-q and p*q-p+q are prime numbers.
2
3, 5, 29, 509, 997, 1399, 1627, 3307, 4217, 5477, 5689, 6569, 6599, 7369, 7393, 7841, 8191, 8861, 10067, 11311, 11801, 13859, 14401, 15859, 16987, 17851, 18211, 20593, 21101, 24169, 25013, 25339, 25621, 26209, 28019, 28409, 28439, 32009, 35677
OFFSET
1,1
COMMENTS
3*5-2=13; 3*5+2=17, 23*29-6=661; 23*29+6=673...
LINKS
MAPLE
p:= 1: q:= 2: Res:= NULL:
while q < 100000 do
p:= q; q:= nextprime(q);
if isprime(p*q+p-q) and isprime(p*q+q-p) then
Res:= Res, q;
fi
od:
Res; # Robert Israel, May 10 2017
MATHEMATICA
lst={}; Do[pp=Prime[n-1]; p=Prime[n]; d=p-pp; If[PrimeQ[pp*p-d]&&PrimeQ[pp*p+d], AppendTo[lst, p]], {n, 2, 8!}]; lst
pqpQ[{p_, q_}]:=Module[{pq=p*q}, And@@PrimeQ[{pq+p-q, pq-p+q}]]; Transpose[ Select[Partition[Prime[Range[4000]], 2, 1], pqpQ]][[2]] (* Harvey P. Dale, May 20 2012 *)
PROG
(PARI) is(n)=my(p); isprime(n) && isprime((p=precprime(n-1))*n+p-n) && isprime(p*n-p+n) \\ Charles R Greathouse IV, May 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Omar E. Pol, Jan 12 2009
STATUS
approved