login
A154549
a(n) = 111111*n.
2
111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 1111110, 1222221, 1333332, 1444443, 1555554, 1666665, 1777776, 1888887, 1999998, 2111109, 2222220, 2333331, 2444442, 2555553, 2666664, 2777775, 2888886, 2999997, 3111108, 3222219, 3333330, 3444441, 3555552
OFFSET
1,1
COMMENTS
This sequence was described by Magnitsky, Leontiy Filippovich (1669-1739), author of "The Russian Mathematical Encyclopedia" (1703) and other books. See the Kvant link. Magnitsky wrote it as a(n) = 143n*777. - Oleg Zyakun, Feb 28 2009
LINKS
A. Zhukov, Wonderful sequences, Kvant 6, 1998. (in Russian)
FORMULA
G.f.: 111111*x/(1-x)^2. - Vincenzo Librandi, Feb 29 2012
From Elmo R. Oliveira, Sep 15 2024: (Start)
E.g.f.: 111111*x*exp(x).
a(n) = a(n-1) + 111111 for n > 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
MATHEMATICA
LinearRecurrence[{2, -1}, {111111, 222222}, 20] (* Vincenzo Librandi, Feb 28 2012 *)
111111Range[30] (* Harvey P. Dale, Aug 11 2016 *)
PROG
(PARI) a(n)=111111*n \\ Charles R Greathouse IV, Jan 11 2012
CROSSREFS
Sequence in context: A094325 A171725 A135403 * A038448 A097077 A109716
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 11 2009
STATUS
approved