login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154529 A090040 mod 9. 1
1, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>2, equal to 2^(n-2) mod 9 [From Michael B. Porter, Feb 02 2010]

Apart from leading terms the same as A146501, A153130 and A029898. [From R. J. Mathar, Apr 13 2010]

LINKS

Table of n, a(n) for n=0..101.

Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).

FORMULA

a(n)=(1/30)*{14*(n mod 6)-11*[(n+1) mod 6]-[(n+2) mod 6]+4*[(n+3) mod 6]+29*[(n+4) mod 6]+19*[(n+5) mod 6]}-6*[C(2*n,n) mod 2)], with n>=0 [From Paolo P. Lava, Jan 13 2009]

a(n)=a(n-1)-a(n-3)+a(n-4), n>4. G.f.: (6*x^4+2*x^3+4*x+1-4*x^2)/((1-x)*(1+x)*(x^2-x+1)). [From R. J. Mathar, Feb 25 2009]

MATHEMATICA

Join[{1}, LinearRecurrence[{1, 0, -1, 1}, {5, 1, 2, 4}, 101]] (* Ray Chandler, Jul 15 2015 *)

CROSSREFS

Sequence in context: A120579 A093316 A085758 * A157823 A159703 A059521

Adjacent sequences:  A154526 A154527 A154528 * A154530 A154531 A154532

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Jan 11 2009

EXTENSIONS

Edited by N. J. A. Sloane, Jan 12 2009

Extended by Ray Chandler, Jul 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 07:20 EDT 2021. Contains 346442 sequences. (Running on oeis4.)