login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154532
a(n) is the largest 10-digit number whose n-th power contains each digit (0-9) n times, or -1 no such number exists.
10
9876543210, 9994363488, 9999257781, 9999112926, 9995722269, 9999409158, 9998033316, 9993870774, 9986053188, 9964052493, 9975246786, 9966918135, 9938689137, 9998781633, 9813743148, 9970902252, 9740383767, 9829440591, 9873773268, 9985819785, 9766102146, 9863817738
OFFSET
1,1
COMMENTS
A number with 10*n digits may have all ten digits (0-9) repeated n times. The probability of this is (10n)!/((n!)^10 * 10^((10*n)-10^(10*n-1)). There are 10^10-10^(10-1/n)) numbers which are n-th powers of 10-digit numbers. So there may exist Count=(10n)!*(10^10-10^(10-1/n)))/((n!)^10 * 10^((10*n)-10^(2*n-1)) numbers with the desired property.
From a(23) to a(110) the only terms which exist are a(24)=9793730157, a(26)=9347769564, a(35)=9959167017, and a(38)=9501874278. (The other values of a(n) are -1.) - Zhining Yang, Oct 05 2022
EXAMPLE
a(18) = 9829440591, so each digit (0-9) appears 18 times in the decimal expansion of 9829440591^18.
PROG
(Python)
def flag(p, n):
b = True
for i in range(10):
if not p.count(str(i)) == n:
b = False
break
return b
def a(n):
for i in range(10 ** 10 - 1, 3 * int(10 ** (10 - 1 / n) / 3), -3):
p = str(i ** n)
if flag(p, n) == True:
return i
break
for i in range(1, 23):
print(i, a(i)) # Zhining Yang, Oct 10 2022
(Python)
def flag(p, n):
return all(p.count(d) == n for d in "0123456789")
def a(n):
return next(i for i in range(10**10-1, 3*int(10**(10-1/n)/3), -3) if flag(str(i**n), n))
for i in range(2, 23):
print(i, a(i)) # _Michael_S._Branicky_, Oct 10 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zhining Yang, Jan 11 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jan 12 2009
a(19)-a(22) from Zhining Yang, Oct 05 2022
Definition revised by N. J. A. Sloane, Nov 22 2022
STATUS
approved