login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154140
Indices k such that 6 plus the k-th triangular number is a perfect square.
4
2, 4, 19, 29, 114, 172, 667, 1005, 3890, 5860, 22675, 34157, 132162, 199084, 770299, 1160349, 4489634, 6763012, 26167507, 39417725, 152515410, 229743340, 888924955, 1339042317, 5181034322, 7804510564, 30197280979, 45488021069, 176002651554, 265123615852
OFFSET
1,1
COMMENTS
In general, indices k such that A001109(2j) plus the k-th triangular number is a perfect square may be found as follows:
b(2n-1) = A001652(n+j-1) - A001653(n-j);
b(2n) = A001652(n-j-1) + A001653(n+j);
Indices k such that A001109(2j-1) plus the k-th triangular number is a perfect square may be found as follows:
b(2n-1) = A001652(n+j-1) - A001653(n-j+1);
b(2n) = A001652(n-j) + A001653(n+j). - Charlie Marion, Mar 10 2011
FORMULA
{k: 6+k*(k+1)/2 in A000290}.
a(2*n-1) = A001652(n) - A001653(n-1).
a(2*n) = A001652(n-2) + A001653(n+1).
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(2 +2*x +3*x^2 -2*x^3 -3*x^4)/((1-x)* (x^2-2*x-1)* (x^2+2*x-1))
G.f.: ( 6 + (-1 -4*x)/(x^2+2*x-1) + (6 +13*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (2,4,19,29); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009
EXAMPLE
2*(2+1)/2+6 = 3^2. 4*(4+1)/2+6 = 4^2. 19*(19+1)/2+6 = 14^2. 29*(29+1)/2+6 = 21^2.
MATHEMATICA
LinearRecurrence[{1, 6, -6, -1, 1}, {2, 4, 19, 29, 114}, 40] (* Following first conjecture *) (* Harvey P. Dale, Apr 11 2016 *)
Join[{2}, Select[Range[1, 1010], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 6 &] ] (* G. C. Greubel, Sep 03 2016 *)
PROG
(Magma) [2] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n + 1)/2)) )^2 - n*(n + 1)/2 eq 6]; // Vincenzo Librandi, Sep 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Oct 18 2009
EXTENSIONS
a(17)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015
STATUS
approved