Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 03 2024 15:40:14
%S 2,4,19,29,114,172,667,1005,3890,5860,22675,34157,132162,199084,
%T 770299,1160349,4489634,6763012,26167507,39417725,152515410,229743340,
%U 888924955,1339042317,5181034322,7804510564,30197280979,45488021069,176002651554,265123615852
%N Indices k such that 6 plus the k-th triangular number is a perfect square.
%C In general, indices k such that A001109(2j) plus the k-th triangular number is a perfect square may be found as follows:
%C b(2n-1) = A001652(n+j-1) - A001653(n-j);
%C b(2n) = A001652(n-j-1) + A001653(n+j);
%C Indices k such that A001109(2j-1) plus the k-th triangular number is a perfect square may be found as follows:
%C b(2n-1) = A001652(n+j-1) - A001653(n-j+1);
%C b(2n) = A001652(n-j) + A001653(n+j). - _Charlie Marion_, Mar 10 2011
%H F. T. Adams-Watters, <a href="http://list.seqfan.eu/oldermail/seqfan/2009-October/002506.html">SeqFan Discussion</a>, Oct 2009.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 6, -6, -1, 1).
%F {k: 6+k*(k+1)/2 in A000290}.
%F a(2*n-1) = A001652(n) - A001653(n-1).
%F a(2*n) = A001652(n-2) + A001653(n+1).
%F Conjectures: (Start)
%F a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
%F G.f.: x*(2 +2*x +3*x^2 -2*x^3 -3*x^4)/((1-x)* (x^2-2*x-1)* (x^2+2*x-1))
%F G.f.: ( 6 + (-1 -4*x)/(x^2+2*x-1) + (6 +13*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
%F a(1..4) = (2,4,19,29); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - _Ctibor O. Zizka_, Nov 10 2009
%e 2*(2+1)/2+6 = 3^2. 4*(4+1)/2+6 = 4^2. 19*(19+1)/2+6 = 14^2. 29*(29+1)/2+6 = 21^2.
%t LinearRecurrence[{1,6,-6,-1,1},{2,4,19,29,114},40] (* Following first conjecture *) (* _Harvey P. Dale_, Apr 11 2016 *)
%t Join[{2}, Select[Range[1, 1010], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 6 &] ] (* _G. C. Greubel_, Sep 03 2016 *)
%o (Magma) [2] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n + 1)/2)) )^2 - n*(n + 1)/2 eq 6]; // _Vincenzo Librandi_, Sep 03 2016
%Y Cf. A000217, A000290, A006451.
%K nonn
%O 1,1
%A _R. J. Mathar_, Oct 18 2009
%E a(17)-a(24) from _Donovan Johnson_, Nov 01 2010
%E a(25)-a(30) from _Lars Blomberg_, Jul 07 2015