login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154117
Expansion of (1 - x + 3*x^2)/((1-x)*(1-2*x)).
8
1, 2, 7, 17, 37, 77, 157, 317, 637, 1277, 2557, 5117, 10237, 20477, 40957, 81917, 163837, 327677, 655357, 1310717, 2621437, 5242877, 10485757, 20971517, 41943037, 83886077, 167772157, 335544317, 671088637, 1342177277, 2684354557
OFFSET
0,2
COMMENTS
Binomial transform of 1,1,4,1,4,1,4,1,4,1,4,1,4,1,4,... - _Philippe Deleham_, Jan 05 2009
FORMULA
From Philippe Deléham, Jan 05 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), n > 2.
a(n) = 2*a(n-1) + 3, n > 1.
a(n) = 5*2^(n-1) - 3, n >= 1. (End)
E.g.f.: (1/2)*(3 - 6*exp(x) + 5*exp(2*x)). - G. C. Greubel, Sep 02 2016
MATHEMATICA
Join[{1}, Table[ 5*2^(n - 1) - 3, {n, 1, 10}]] (* or *) Join[{1, 2, 7}, LinearRecurrence[{3, -2}, {17, 37}, 10]] (* G. C. Greubel, Sep 02 2016 *)
PROG
(Magma) [1] cat [5*2^n-3 : n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
(PARI) a(n)=if(n, 5<<(n-1)-3, 1) \\ Charles R Greathouse IV, Sep 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(0) added by Philippe Deléham, Jan 05 2009
STATUS
approved