OFFSET
0,12
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 45 rows
FORMULA
T(n,k) = binomial(floor((n+k-1)/2),k).
Sum_{k=0..n} T(n,k)*x^k = A122335(n-1), A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Dec 17 2011
Sum_{k=0..n} T(n,k)*x^(n-k) = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 17 2011
G.f.: (1+(1-y)*x)/(1-y*x-x^2). - Philippe Deléham, Dec 17 2011
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 1, 1, 0;
1, 2, 1, 1, 0;
1, 2, 3, 1, 1, 0;
1, 3, 3, 4, 1, 1, 0;
...
MATHEMATICA
Table[Binomial[Floor[(n + k - 1)/2], k], {n, 0, 45}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)
PROG
(Magma) /* As triangle */ [[Binomial(Floor((n+k-1)/2), k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 28 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 01 2009
STATUS
approved