login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153642
a(n) = 4*n^2 + 24*n + 8.
5
36, 72, 116, 168, 228, 296, 372, 456, 548, 648, 756, 872, 996, 1128, 1268, 1416, 1572, 1736, 1908, 2088, 2276, 2472, 2676, 2888, 3108, 3336, 3572, 3816, 4068, 4328, 4596, 4872, 5156, 5448, 5748, 6056, 6372, 6696, 7028, 7368, 7716, 8072, 8436, 8808, 9188
OFFSET
1,1
COMMENTS
2*(fifth subdiagonal of triangle A144562).
Sequence gives values x of solutions (x, y) to the Diophantine equation x^3+28*x^2 = y^2. For a more comprehensive list of solutions see A155135.
For n >= 3, a(n - 1) is the number of checkmate positions with white queen and white king against black king on an n X n board. Reason: The black king can only be on the edge. There are 4*(4*n + 1) checkmate positions where the black king is in the corner, 4*(2*n + 4) checkmate positions where the black king is immediately adjacent to the corner square, and there are 4*(n - 4)*(n + 2) checkmate positions where the black king is on another edge square. That's a total of 4*n^2 + 16*n - 12 = a(n - 1) checkmate positions. - Felix Huber, Oct 29 2023
FORMULA
a(n) = A155135(2n+8) = A155136(2n+7).
a(n) = 4*A028881(n+3).
G.f.: 4*(3 - x)*(3 - 2*x)/(1-x)^3.
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 4*(-2 + (2 + 7*x + x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/56 - cot(sqrt(7)*Pi)*Pi/(8*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/168 - cosec(sqrt(7)*Pi)*Pi/(8*sqrt(7)). (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {36, 72, 116}, 50] (* Vincenzo Librandi, Feb 25 2012 *)
PROG
(Magma) [ 4*(n+3)^2-28: n in [1..45] ];
(PARI) a(n)=4*n*(n+6)+8 \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Dec 30 2008
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jan 21 2009
STATUS
approved