login
A153645
Primes p such that p^2 + 4 and p^2 + 4p + 2 are also prime.
1
3, 5, 7, 13, 17, 47, 67, 73, 137, 167, 277, 307, 313, 487, 503, 593, 607, 613, 787, 823, 1117, 1123, 1237, 1523, 1543, 1637, 1987, 2777, 2887, 3037, 3163, 3433, 3457, 3463, 3797, 3853, 4093, 4283, 4583, 5113, 5297, 5323, 5683, 5953, 6047, 6577, 6803, 6823
OFFSET
1,1
COMMENTS
Subsequence of A062324.
LINKS
EXAMPLE
For prime p = 3, p^2+4 = 13 and p^2+4p+2 = 23 are prime; for p = 67, p^2+4 = 4493 and p^2+4p+2 = 4759 are prime.
MAPLE
a := proc (n) if isprime(n) = true and isprime(n^2+4) = true and isprime(n^2+4*n+2) = true then n else end if end proc: seq(a(n), n = 1 .. 7000); # Emeric Deutsch, Jan 02 2009
MATHEMATICA
Select[Prime[Range[10000]], PrimeQ[#^2+4]&&PrimeQ[#^2 +4#+2]&] (* Vincenzo Librandi, Jul 27 2012 *)
PROG
(Magma) [ p: p in PrimesUpTo(7000) | IsPrime(p^2+4) and IsPrime(p^2+4*p+2) ];
CROSSREFS
Cf. A062324 (p and p^2+4 are both prime).
Sequence in context: A226794 A300748 A173641 * A106878 A192294 A227531
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 30 2008
EXTENSIONS
Edited, corrected (three terms deleted) and extended beyond a(10) by Klaus Brockhaus, Jan 02 2009
Corrected and extended by Emeric Deutsch, Jan 02 2009
STATUS
approved