OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to the approximation to Feigenbaum's constant mentioned in A103546. = 2.48634376497....;.
LINKS
Weisstein, Eric W. Feigenbaum Constant. Equation (11).
Index entries for linear recurrences with constant coefficients, signature (-2,2,1,-2,1).
FORMULA
p(x)=x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1; a(n)=coefficient_expansion(1/(x^5*p(1/x))).
MATHEMATICA
f[x_] = x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1;
g[x] = ExpandAll[x^5*f[1/x]]'
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula and Gary W. Adamson, Dec 18 2008
EXTENSIONS
Edited by N. J. A. Sloane, Dec 19 2008
STATUS
approved