login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109545
a(n) = 2*a(n-1) + a(n-2) + a(n-3).
1
1, 1, 2, 6, 15, 38, 97, 247, 629, 1602, 4080, 10391, 26464, 67399, 171653, 437169, 1113390, 2835602, 7221763, 18392518, 46842401, 119299083, 303833085, 773807654, 1970747476, 5019135691, 12782826512, 32555536191, 82913034585
OFFSET
0,3
LINKS
David Garth and Kevin G. Hare, Comments on the spectra of Pisot numbers, J. Number Theory 121 (2006), 187-203.
FORMULA
lim_{n-> infinity} a(n)/a(n-1)= 2.54682...
G.f.: (1-x-x^2)/(1-2*x-x^2-x^3). [Sep 28 2009]
a(n) = A077939(n)-A116413(n-1).
G.f.: (-1+x+x^2)/(-1+2*x+x^2+x^3). a(n) = A077997(n)-A077939(n-2). [From R. J. Mathar, Sep 27 2009]
MATHEMATICA
a = 2; b = -1; M = {{0, 1, 0, 0, 0}, { a - 2, a - 2, a - 2 - b, a - 2 - b, 0}, {1, 1, 1, 1, 0}, {0, 1, 1, 0, 0}, {0, 0, 0, 1, 1}} v[1] = {1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a0 = Table[Abs[v[n][[1]]], {n, 1, 50}]
LinearRecurrence[{2, 1, 1}, {1, 1, 2}, 30] (* Harvey P. Dale, Aug 05 2015 *)
Lucas := 1 + x (1 + 2 x)/(1 - x - x^2); (* InvertTransform defined in A052987 *)
InvertTransform[Lucas, 28] (* Peter Luschny, Jan 10 2019 *)
CROSSREFS
Sequence in context: A290762 A106515 A153122 * A191634 A120846 A101522
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 20 2005
EXTENSIONS
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
STATUS
approved