login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109542
a(n) = number of labeled 3-regular (trivalent) multi-graphs without self-loops on 2n vertices with a maximum of 2 edges between any pair of nodes. Also a(n) = number of labeled symmetric 2n X 2n matrices with {0,1,2}-entries with row sum equal to 3 for each row and trace 0.
0
0, 7, 640, 170555, 94949400, 95830621425, 159062872168200, 404720953797785625
OFFSET
1,2
EXAMPLE
a(2)=7 because for 2*n=4 nodes there are 7 possible labeled graphs whose adjacency matrices are as follows:
0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0;
0 1 2 0
1 0 0 2
2 0 0 1
0 2 1 0;
0 2 0 1
2 0 1 0
0 1 0 2
1 0 2 0;
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0;
0 0 2 1
0 0 1 2
2 1 0 0
1 2 0 0;
0 1 0 2
1 0 2 0
0 2 0 1
2 0 1 0;
0 0 1 2
0 0 2 1
1 2 0 0
2 1 0 0.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jeremy Gardiner, Aug 29 2005
EXTENSIONS
a(5)-a(8) from Max Alekseyev, Aug 30 2005
STATUS
approved