login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101811
Numerator of the permanent of the n-th Hilbert matrix.
2
1, 7, 647, 32547, 32104903, 5850859031888599, 29453515169174062608487, 2335404534493957255219087217249, 418207321191051873285940121750107840759
OFFSET
1,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..25
FORMULA
Numer(permanent(matrix(1/(i+j-1);i, j=1, ..., n)))
EXAMPLE
a(2)=7 because the Hilbert matrix is [[1,1/2],[1/2,1/3]] and its permanent is 1*1/3 + (1/2)*(1/2)=7/12.
MAPLE
with(linalg): seq(numer(permanent(hilbert(n))), n=1..12);
MATHEMATICA
hilbert[n_] := Table[1/(i + j - 1), {i, 1, n}, {j, 1, n}]; a[n_] := Permanent[hilbert[n]] // Numerator; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 9}] (* Jean-François Alcover, Jan 07 2016 *)
PROG
(PARI) permRWNb(a)=n=matsize(a)[1]; if(n==1, return(a[1, 1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[, n]-sum(j=1, n, a[, j])/2; p=prod(i=1, n, x[i]); for(k=1, 2^(n-1)-1, sg=-sg; j=valuation(k, 2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[, j]; p+=prod(i=1, n, x[i], sg)); return(2*(2*(n%2)-1)*p) num=[]; den=[]; for(n=1, 20, a=matrix(n, n, i, j, 1/(i+j-1)); p=permRWNb(a); num=concat(num, numerator(p)); den=concat(den, denominator(p))); num - Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007
CROSSREFS
Cf. A101812.
Sequence in context: A109542 A052132 A052134 * A092326 A344049 A347507
KEYWORD
nonn,frac
AUTHOR
Emeric Deutsch, Dec 16 2004
STATUS
approved