login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103546
Decimal expansion of the negated value of the smallest real root of the quintic equation x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1 = 0.
2
2, 4, 8, 6, 3, 4, 3, 7, 6, 4, 9, 5, 9, 0, 7, 9, 6, 6, 5, 2, 6, 7, 1, 9, 5, 3, 3, 0, 9, 7, 0, 7, 2, 2, 1, 2, 0, 1, 4, 0, 9, 0, 3, 8, 5, 2, 5, 9, 2, 7, 0, 5, 8, 1, 9, 7, 6, 4, 9, 9, 4, 0, 3, 3, 2, 9, 9, 1, 1, 1, 8, 5, 4, 0, 0, 1, 1, 4, 7, 3, 0, 5, 5, 1, 5, 5, 9, 0, 9, 1, 0, 4, 6, 9, 2, 8, 0, 8, 0, 1, 7, 2, 3, 1, 7
OFFSET
1,1
COMMENTS
This is an approximation to the Feigenbaum reduction parameter.
The other two real roots are 0.76660865407289... and -1.16317291980104...
EXAMPLE
The real roots are (roughly) -2.486343765, -1.163172920, 0.7666086541.
MATHEMATICA
RealDigits[ FindRoot[x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1 == 0, {x, -3}, WorkingPrecision -> 2^7][[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)
Root[#^5 + 2#^4 - 2#^3 - #^2 + 2# - 1&, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 27 2013 *)
PROG
(PARI) polrootsreal(x^5 - 2*x^4 - 2*x^3 + x^2 + 2*x + 1)[3] \\ Charles R Greathouse IV, Apr 14 2014
CROSSREFS
Sequence in context: A000689 A132137 A011180 * A321043 A080868 A046260
KEYWORD
cons,nonn
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 23 2005
STATUS
approved