login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153037
a(n) = 2*n^2 + 16*n + 23.
3
23, 41, 63, 89, 119, 153, 191, 233, 279, 329, 383, 441, 503, 569, 639, 713, 791, 873, 959, 1049, 1143, 1241, 1343, 1449, 1559, 1673, 1791, 1913, 2039, 2169, 2303, 2441, 2583, 2729, 2879, 3033, 3191, 3353, 3519, 3689, 3863, 4041, 4223, 4409, 4599, 4793, 4991
OFFSET
0,1
COMMENTS
Sixth diagonal of triangle A154685.
Numbers of the form 2*k^2 - 9. - Bruno Berselli, Oct 30 2012
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
G.f.: (23 - 28*x + 9*x^2)/(1-x)^3. - Vincenzo Librandi, Jan 04 2013
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 137/126 - cot(3*Pi/sqrt(2))*Pi/(6*sqrt(2)).
Sum_{n>=0} (-1)^n/a(n) = 43/42 - cosec(3*Pi/sqrt(2))*Pi/(6*sqrt(2)). (End)
MATHEMATICA
Table[2*n^2 + 16*n + 23, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
LinearRecurrence[{3, -3, 1}, {23, 41, 63}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
CoefficientList[Series[(23 - 28*x +9*x^2)/(1 -x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 04 2013 *)
PROG
(PARI) a(n)=2*n^2+16*n+23 \\ Charles R Greathouse IV, Jan 11 2012
(Magma) I:=[23, 41, 63]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
CROSSREFS
Sequence in context: A163635 A376013 A083444 * A106970 A155702 A114379
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 25 2009
EXTENSIONS
Erroneously duplicated terms removed by Vincenzo Librandi, Feb 22 2012
STATUS
approved