login
A152995
Twice 11-gonal numbers: a(n) = n*(9*n-7).
3
0, 2, 22, 60, 116, 190, 282, 392, 520, 666, 830, 1012, 1212, 1430, 1666, 1920, 2192, 2482, 2790, 3116, 3460, 3822, 4202, 4600, 5016, 5450, 5902, 6372, 6860, 7366, 7890, 8432, 8992, 9570, 10166, 10780, 11412, 12062, 12730, 13416, 14120
OFFSET
0,2
FORMULA
a(n) = 9*n^2 - 7*n = A051682(n)*2.
a(n) = a(n-1) + 18*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
a(0)=0, a(1)=2, a(2)=22, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 02 2011
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1+8*x)/(1-x)^3.
E.g.f.: x*(2+9*x)*exp(x). (End)
MAPLE
seq(n*(9*n-7), n=0..50); # G. C. Greubel, Sep 01 2019
MATHEMATICA
Table[n(9n-7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 2, 22}, 40] (* Harvey P. Dale, Nov 02 2011 *)
2*PolygonalNumber[11, Range[0, 40]] (* Harvey P. Dale, May 31 2024 *)
PROG
(Magma) [n*(9*n-7): n in [0..50]];
(PARI) a(n)=n*(9*n-7) \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [n*(9*n-7) for n in (0..50)] # G. C. Greubel, Sep 01 2019
(GAP) List([0..50], n-> n*(9*n-7)); # G. C. Greubel, Sep 01 2019
CROSSREFS
Cf. A051682 (11-gonal numbers).
Cf. A226488.
Sequence in context: A156454 A168669 A271883 * A273366 A053940 A156480
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Dec 22 2008
STATUS
approved