login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152995
Twice 11-gonal numbers: a(n) = n*(9*n-7).
3
0, 2, 22, 60, 116, 190, 282, 392, 520, 666, 830, 1012, 1212, 1430, 1666, 1920, 2192, 2482, 2790, 3116, 3460, 3822, 4202, 4600, 5016, 5450, 5902, 6372, 6860, 7366, 7890, 8432, 8992, 9570, 10166, 10780, 11412, 12062, 12730, 13416, 14120
OFFSET
0,2
FORMULA
a(n) = 9*n^2 - 7*n = A051682(n)*2.
a(n) = a(n-1) + 18*n - 16 (with a(0)=0). - Vincenzo Librandi, Nov 27 2010
a(0)=0, a(1)=2, a(2)=22, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Nov 02 2011
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 2*x*(1+8*x)/(1-x)^3.
E.g.f.: x*(2+9*x)*exp(x). (End)
MAPLE
seq(n*(9*n-7), n=0..50); # G. C. Greubel, Sep 01 2019
MATHEMATICA
Table[n(9n-7), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 2, 22}, 40] (* Harvey P. Dale, Nov 02 2011 *)
2*PolygonalNumber[11, Range[0, 40]] (* Harvey P. Dale, May 31 2024 *)
PROG
(Magma) [n*(9*n-7): n in [0..50]];
(PARI) a(n)=n*(9*n-7) \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [n*(9*n-7) for n in (0..50)] # G. C. Greubel, Sep 01 2019
(GAP) List([0..50], n-> n*(9*n-7)); # G. C. Greubel, Sep 01 2019
CROSSREFS
Cf. A051682 (11-gonal numbers).
Cf. A226488.
Sequence in context: A156454 A168669 A271883 * A273366 A053940 A156480
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Dec 22 2008
STATUS
approved