login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152880
Number of Dyck paths of semilength n having exactly one peak of maximum height.
5
1, 1, 3, 8, 23, 71, 229, 759, 2566, 8817, 30717, 108278, 385509, 1384262, 5006925, 18225400, 66711769, 245400354, 906711758, 3363516354, 12522302087, 46773419089, 175232388955, 658295899526, 2479268126762, 9359152696924, 35406650450001, 134215036793130
OFFSET
1,3
COMMENTS
Also number of peaks of maximum height in all Dyck paths of semilength n-1. Example: a(3)=3 because in (UD)(UD) and U(UD)D we have three peaks of maximum height (shown between parentheses).
FORMULA
G.f.: g(z) = Sum_{j>=1} z^j/f(j)^2, where the f(j)'s are the Fibonacci polynomials (in z) defined by f(0)=f(1)=1, f(j)=f(j-1)-zf(j-2), j>=2.
a(n) = A152879(n,1).
a(n) = Sum_{k=1..n} k*A152879(n-1,k).
EXAMPLE
a(3)=3 because we have UU(UD)DD, UDU(UD)D, U(UD)DUD, where U=(1,1), D=(1,-1), with the peak of maximum height shown between parentheses; the path UUDUDD does not qualify because it has two peaks of maximum height.
MAPLE
f[0] := 1: f[1] := 1: for i from 2 to 35 do f[i] := sort(expand(f[i-1]-z*f[i-2])) end do; g := sum(z^j/f[j]^2, j = 1 .. 34): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 1 .. 27);
# second Maple program:
b:= proc(x, y, h, c) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, c, add(b(x-1, y-i, max(h, y), `if`(h=y, 0,
`if`(h<y, 1, c))), i=[1, -1])))
end:
a:= n-> b(2*n, 0$3):
seq(a(n), n=1..28); # Alois P. Heinz, Jul 25 2023
MATHEMATICA
b[x_, y_, h_, c_] := b[x, y, h, c] = If[y<0 || y>x, 0, If[x==0, c, Sum[b[x-1, y-i, Max[h, y], If[h==y, 0, If[h<y, 1, c]]], {i, {1, -1}}]]];
a[n_] := b[2*n, 0, 0, 0];
Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Sep 17 2024, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A371928.
Sequence in context: A148776 A353067 A127385 * A259441 A176605 A080410
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 02 2009
STATUS
approved