login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152732
a(n) + a(n+1) + a(n+2) = 2^n.
2
0, 0, 2, 2, 4, 10, 18, 36, 74, 146, 292, 586, 1170, 2340, 4682, 9362, 18724, 37450, 74898, 149796, 299594, 599186, 1198372, 2396746, 4793490, 9586980, 19173962, 38347922, 76695844, 153391690, 306783378, 613566756, 1227133514, 2454267026, 4908534052
OFFSET
1,3
COMMENTS
0 + 0 + 2 = 2^1; 0 + 2 + 2 = 2^2; 2 + 2 + 4 = 2^3; 2 + 4 + 10 = 2^4; ...
With a(0)=1, a(n) is the number of length n strings in the language over alphabet {0,1} generated by the regular expression: ((0+1)(0*(11)*)*10)*. - Geoffrey Critzer, Jan 25 2014
FORMULA
From R. J. Mathar, Dec 12 2008: (Start)
a(n) = 2*A077947(n-3).
G.f.: 2*x^3/((1-2*x)*(1+x+x^2)). (End)
a(n) = (1/21)*(3*2^n + 18*cos((2*n*Pi)/3) + 2*sqrt(3)*sin((2*n*Pi)/3)). - Zak Seidov, Dec 12 2008
MATHEMATICA
k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=2^n-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 5!}]; lst
LinearRecurrence[{1, 1, 2}, {0, 0, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
PROG
(PARI) concat([0, 0], Vec(2/(1-2*x)/(1+x+x^2)+O(x^99))) \\ Charles R Greathouse IV, Feb 24 2012
(Magma) I:=[0, 0, 2]; [n le 3 select I[n] else Self(n-1) +Self(n-2) +2*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 01 2018
KEYWORD
nonn,easy
AUTHOR
STATUS
approved