login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152690
Partial sums of superfactorials (A000178).
2
1, 2, 4, 16, 304, 34864, 24918064, 125436246064, 5056710181206064, 1834938528961266006064, 6658608419043265483506006064, 265790273955000365854215115506006064
OFFSET
1,2
LINKS
FORMULA
G.f.: W(0)/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+1)!/( x*(k+1)! + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
a(n) ~ exp(1/12 - 3*n^2/4) * n^(n^2/2 - 1/12) * (2*Pi)^(n/2) / A, where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = n! * G(n+1) + a(n-1), where G(z) is the Barnes G-function. - Daniel Suteu, Jul 23 2016
MATHEMATICA
lst={}; p0=1; s0=0; Do[p0*=a[n]; s0+=p0; AppendTo[lst, s0], {n, 0, 4!}]; lst
s = 0; lst = {s}; Do[s += BarnesG[n]; AppendTo[lst, s], {n, 2, 13, 1}]; lst (* Zerinvary Lajos, Jul 16 2009 *)
Table[Sum[BarnesG[k+1], {k, 1, n}], {n, 1, 15}] (* Vaclav Kotesovec, Jul 10 2015 *)
KEYWORD
nonn
AUTHOR
STATUS
approved