OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Amiram Eldar, Feb 20 2023: (Start)
Sum_{n>=0} 1/a(n) = sqrt(5-2*sqrt(5))*Pi/40.
Sum_{n>=0} (-1)^n/a(n) = (sqrt(10-2*sqrt(5))*log(cot(Pi/20)) + sqrt(10+2*sqrt(5))*log(tan(3*Pi/20)))/40.
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/10)/phi, where phi is the golden ratio (A001622).
Product_{n>=0} (1 + 1/a(n)) = 2*cos(sqrt(3)*Pi/10)/phi. (End)
From Elmo R. Oliveira, Nov 27 2024: (Start)
G.f.: (21 + 158*x + 21*x^2)/(1-x)^3.
E.g.f.: (21 + 200*x + 100*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
MATHEMATICA
Table[100*n^2 + 100*n + 21, {n, 0, 50}] (* G. C. Greubel, Sep 20 2018 *)
LinearRecurrence[{3, -3, 1}, {21, 221, 621}, 40] (* Harvey P. Dale, Dec 06 2018 *)
PROG
(Magma) [(10*n+3)*(10*n+7): n in [0..40]]; // Vincenzo Librandi, Jul 28 2011
(PARI) a(n)=100*n*(n+1)+21 \\ Charles R Greathouse IV, Jul 28 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 27 2008
STATUS
approved