|
|
A151723
|
|
Total number of ON states after n generations of cellular automaton based on hexagons.
|
|
40
|
|
|
0, 1, 7, 13, 31, 37, 55, 85, 127, 133, 151, 181, 235, 289, 331, 409, 499, 505, 523, 553, 607, 661, 715, 817, 967, 1069, 1111, 1189, 1327, 1489, 1603, 1789, 1975, 1981, 1999, 2029, 2083, 2137, 2191, 2293, 2443, 2545, 2599, 2701, 2875, 3097, 3295
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Analog of A151725, but here we are working on the triangular lattice (or the A_2 lattice) where each hexagonal cell has six neighbors.
A cell is turned ON if exactly one of its six neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
It would be nice to find a recurrence for this sequence!
Has a behavior similar to A182840 and possibly to A182632. - Omar E. Pol, Jan 15 2016
|
|
REFERENCES
|
S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 0..4095 [First 1026 terms from David Applegate and N. J. A. Sloane]
David Applegate, The movie version
David Applegate and N. J. A. Sloane, Table of n, A151724(n), A151723(n) for n = 0..1025
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Bradley Klee, Log-periodic coloring, over the half-hexagon tiling.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021
|
|
FORMULA
|
a(n) = 6*A169780(n) - 6*n + 1 (this is simply the definition of A169780).
a(n) = 1 + 6*A169779(n-2), n >= 2. - Omar E. Pol, Mar 19 2015
It appears that a(n) = a(n-2) + 3*(A256537(n) - 1), n >= 3. - Omar E. Pol, Apr 04 2015
|
|
MATHEMATICA
|
A151723[0] = 0; A151723[n_] := Total[CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, {{{n - 1}}}], 2]; Array[A151723, 47, 0](* JungHwan Min, Sep 01 2016 *)
A151723L[n_] := Prepend[Total[#, 2] & /@ CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, n - 1], 0]; A151723L[46] (* JungHwan Min, Sep 01 2016 *)
|
|
CROSSREFS
|
Cf. A147562, A151724, A151725, A161206, A161644, A169779, A169780, A170898, A170905, A182632, A182840, A256536, A256537.
Sequence in context: A073473 A272407 A040084 * A046139 A023243 A335794
Adjacent sequences: A151720 A151721 A151722 * A151724 A151725 A151726
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Applegate and N. J. A. Sloane, Jun 13 2009
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Jan 10 2010
|
|
STATUS
|
approved
|
|
|
|