login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147859
Chromatic polynomial pi_n(z) of the helm graph H_n evaluated at z=n.
1
0, 0, 0, 5832, 1228800, 384375000, 153080202240, 77461492681776, 48745516577587200, 37439062705187626320, 34519165560000000000000, 37661140521028611405206520, 48018043198541202818460549120, 70773783408692477397888505288296, 119443378434420330312430518726819840
OFFSET
1,4
COMMENTS
The helm graph H_n is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle.
LINKS
J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
Eric W. Weisstein, Helm Graph
FORMULA
Pi_n(z) = z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n); a(n) = Pi_n(n).
EXAMPLE
a(3) = 3 * ((1 - 3)^3 * (3 - 2) + (3 - 2)^3 * (3 - 1)^3) = 0.
MAPLE
P := proc(n, z) z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n) ; end: A147859 := proc(n) P(n, n) ; end: for n from 1 to 15 do printf("%d, ", A147859(n)) ; od: # R. J. Mathar, Jan 22 2009
CROSSREFS
Sequence in context: A035903 A251189 A269185 * A269151 A269213 A114771
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 16 2008
EXTENSIONS
Corrected parentheses, definition and values R. J. Mathar, Jan 22 2009
STATUS
approved