Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 28 2018 12:20:48
%S 0,0,0,5832,1228800,384375000,153080202240,77461492681776,
%T 48745516577587200,37439062705187626320,34519165560000000000000,
%U 37661140521028611405206520,48018043198541202818460549120,70773783408692477397888505288296,119443378434420330312430518726819840
%N Chromatic polynomial pi_n(z) of the helm graph H_n evaluated at z=n.
%C The helm graph H_n is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle.
%H J. A. Gallian, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6">A dynamic survey of graph labeling</a>, Elec. J. Combin., (2013), #DS6.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/HelmGraph.html">Helm Graph</a>
%F Pi_n(z) = z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n); a(n) = Pi_n(n).
%e a(3) = 3 * ((1 - 3)^3 * (3 - 2) + (3 - 2)^3 * (3 - 1)^3) = 0.
%p P := proc(n,z) z*((1-z)^n*(z-2)+(z-2)^n*(z-1)^n) ; end: A147859 := proc(n) P(n,n) ; end: for n from 1 to 15 do printf("%d,",A147859(n)) ; od: # _R. J. Mathar_, Jan 22 2009
%K easy,nonn
%O 1,4
%A _Jonathan Vos Post_, Nov 16 2008
%E Corrected parentheses, definition and values _R. J. Mathar_, Jan 22 2009