OFFSET
1,2
COMMENTS
Also, number of inequivalent (i.e., q < r) integer solutions to 1/pqr = 1/p - 1/q - 1/r with p <= n; cf. A147811.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{p = 1..n} tau(1 + p^2)/2 = n + A147806(n) > n.
a(n) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023
MATHEMATICA
Accumulate[DivisorSigma[0, Range[64]^2 + 1]/2] (* Amiram Eldar, Oct 25 2019 *)
PROG
(PARI) s=0; A147807=vector(99, n, s+=numdiv(n^2+1))/2
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Dec 13 2008
STATUS
approved