login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146759
Number of primes p < 10^n such that c - p is prime, where c is the next cube greater than p.
3
2, 7, 43, 224, 1355, 9306, 66200, 500249, 3883527, 31081813, 254358928
OFFSET
1,1
EXAMPLE
a(2) = 7 because at 10^2 there are 7 primes that, subtracted from the next higher value cube, produce prime differences: {3, 5, 41, 47, 53, 59, 61}.
MATHEMATICA
Table[Length[Select[Prime[Range[PrimePi[10^n]]], PrimeQ[Ceiling[#^(1/3)]^3 - #] &]], {n, 6}] (* T. D. Noe, Mar 31 2013 *)
cpQ[n_]:=PrimeQ[Ceiling[Surd[n, 3]]^3-n]; nn=9; Module[{c=Table[If[ cpQ[n], 1, 0], {n, Prime[ Range[ PrimePi[ 10^nn]]]}]}, Table[ Total[ Take[c, PrimePi[10^p]]], {p, nn}]] (* Harvey P. Dale, Aug 13 2014 *)
PROG
(UBASIC)
10 'cu less pr are prime
20 N=1:O=1:C=1
30 A=3:S=sqrt(N):if N>10^3 then print N, C-1:stop
40 B=N\A
50 if B*A=N then 100
60 A=A+2
70 if A<=S then 40
80 R=O^3:Q=R-N
90 if N<R and N=prmdiv(N) and Q=prmdiv(Q) then if Q>1 print R; N; Q; C:N=N+2:C=C+1:goto 30
100 N=N+2:if N<R then 30:else O=O+1:goto 80
(PARI) a(n) = {my(nb = 0); forprime(p=2, 10^n, if (isprime((sqrtnint(p, 3)+1)^3 - p), nb++); ); nb; } \\ Michel Marcus, Jun 22 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Enoch Haga, Nov 02 2008
EXTENSIONS
Better name and more terms from Sean A. Irvine, Mar 27 2013
a(10)-a(11) from Chai Wah Wu, Jun 21 2019
STATUS
approved