login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235714
Consider N = numerator( 1/p! + 1/q! ) where p = prime(n), q = prime(n+1) for n = 1,2,3,.... Append N to sequence if it is a prime.
1
2, 7, 43, 157, 7, 72775847, 139, 523, 751, 193, 19183, 22651, 140165120353, 1051, 37057, 433, 7459, 8263, 19248899859613286187907, 1564207235629, 10453, 877, 1993, 45183625504351, 121453, 89248200525047, 1505879629
OFFSET
1,1
LINKS
EXAMPLE
43 is in the sequence because ( 1/5! + 1/7! ) = (1/120 + 1/5040) = 43/5040: numerator(43/5040) = 43 which is prime.
MAPLE
KD := proc() local a, b, d, e; a:=ithprime(n)!; b:= ithprime(n+1)!; d:=(1/a) + (1/b); e:=numer(d); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..100);
MATHEMATICA
k={}; Do[p=Prime[n]; q=Prime[n+1]; p2=Numerator[1/p!+1/q!]; If[PrimeQ[p2], AppendTo[k, p2]], {n, 150}]; k
CROSSREFS
Sequence in context: A065298 A091877 A050631 * A146759 A303031 A220220
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 15 2014
STATUS
approved