login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145574
Array a(n,m) for number of partitions of n>=2 with m parts having no part 1. Hence m=1..floor(n/2).
5
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 1, 1, 4, 4, 2, 1, 1, 4, 5, 3, 1, 1, 5, 7, 5, 2, 1, 1, 5, 8, 6, 3, 1, 1, 6, 10, 9, 5, 2, 1, 1, 6, 12, 11, 7, 3, 1, 1, 7, 14, 15, 10, 5, 2, 1, 1, 7, 16, 18, 13, 7, 3, 1, 1, 8, 19, 23, 18, 11, 5, 2, 1, 1, 8, 21, 27, 23, 14, 7, 3, 1, 1, 9, 24, 34, 30
OFFSET
2,8
COMMENTS
The row lengths sequence is floor(n/2) = [1,1,2,2,3,3,4,4,...], see A008619(n-1), n>=2.
Obtained from the characteristic partition array A145573 by summing in row n>=2 over entries belonging to like parts number m.
The column sequences give A000012, A004526, A001399, A001400, A001401, A001402, A026813 for m=1..7.
LINKS
FORMULA
a(n,m) = sum over entries of A145573(n,k) array which belong to partitions with part number m, for m=1..floor(n/2)). Note that partitions with parts number m>floor(n/2) have always at least one part 1.
G.f.: Product_{i>=2} 1/(1- y*x^i). - Geoffrey Critzer, Sep 23 2012
EXAMPLE
1;
1;
1, 1;
1, 1;
1, 2, 1;
1, 2, 1;
1, 3, 2, 1;
1, 3, 3, 1;
1, 4, 4, 2, 1;
MAPLE
b:= proc(n, i, t) option remember; `if`(2*t>n or t*i<n, 0,
`if`(n=0, 1, `if`(i<2, 0, b(n, i-1, t) +b(n-i, i, t-1))))
end:
a:= (n, m)-> b(n, n, m):
seq(seq(a(n, m), m=1..iquo(n, 2)), n=2..30); # Alois P. Heinz, Oct 18 2012
MATHEMATICA
nn=15; f[list_]:=Select[list, #>0&]; p=Product[1/(1-y x^i), {i, 2, nn}]; Drop[Map[f, CoefficientList[Series[p, {x, 0, nn}], {x, y}]], 1]//Grid (* Geoffrey Critzer, Sep 23 2012 *)
PROG
(Sage) # Prints the table; cf. A011973.
for n in (2..20): [Partitions(n, length=m, min_part=2).cardinality() for m in (1..n//2)] # Peter Luschny, Oct 18 2012
CROSSREFS
Cf. A145573, A002865 (row sums).
Sequence in context: A108316 A322426 A335438 * A182579 A290737 A056138
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang and Malin Sjodahl, Mar 06 2009
STATUS
approved