login
A145572
Numerators of partial sums for Liouville's constant, read as base 2 (binary) numbers.
3
1, 3, 49, 12845057, 1017690263500988729456314874071089153, 4222921592695952872362526736376161058920018764920519780147745963811744865992371113095993596088044297100172572224585271942341064532181870606866447799704872724575357044373908131956500952542608981420222196042850818326529
OFFSET
1,2
COMMENTS
a(n) is A145571(n) (a decimal number with digits only from {0,1}) read as base 2 number converted back into decimal notation.
The sequence of digit lengths is 1,1,2,8,37,217,1518,... (see A317873).
This sequence gives the numerators of the partial sums for the constant A092874 (called there "binary" Liouville number). See the B(n) formula below. - Wolfdieter Lang, Apr 10 2024
FORMULA
a(n) = A145571(n) interpreted as number in binary notation, then converted to decimal notation.
From Wolfdieter Lang, Apr 10 2024: (Start)
a(n) = Sum_{j=0..n} 2^(n! - j!) = 2^(n!)*B(n) = numerator(B(n)), where B(n) := Sum_{j=1..n} 1/2^(j!), for n >= 1 (Proof from the positions of 1 in A145571).
a(1) = 1, and a(n) = a(n-1)*2^z(n) + 1, where z(n) = n! - (n-1)! = A001563(n-1), for n >= 2.
(End)
EXAMPLE
a(3)=49, because A145571(3)=110001, and the binary number 110001 translates to 2^5+2^4+2^0=32+16+1 = 49.
MATHEMATICA
a[n_] := FromDigits[RealDigits[Sum[1/10^k!, {k, n}], 10, n!][[1]], 2]; Array[a, 6] (* Robert G. Wilson v, Aug 08 2018 *)
Block[{k = 0}, NestList[#*2^(++k*k!) + 1 &, 1, 5]] (* Paolo Xausa, Jun 27 2024 *)
CROSSREFS
Cf. A001563, A092874, A145571 (numerators of approximations for Liouville's number).
Cf. A317873.
Sequence in context: A203700 A063893 A291707 * A309869 A356640 A350810
KEYWORD
nonn,base,easy
AUTHOR
Wolfdieter Lang Mar 06 2009
STATUS
approved