login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145356
Partition number array, called M31hat(6).
3
1, 6, 1, 42, 6, 1, 336, 42, 36, 6, 1, 3024, 336, 252, 42, 36, 6, 1, 30240, 3024, 2016, 1764, 336, 252, 216, 42, 36, 6, 1, 332640, 30240, 18144, 14112, 3024, 2016, 1764, 1512, 336, 252, 216, 42, 36, 6, 1, 3991680, 332640, 181440, 127008, 112896, 30240, 18144, 14112
OFFSET
1,2
COMMENTS
Each partition of n, ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31hat(6;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
Sixth member (K=6) in the family M31hat(K) of partition number arrays.
If M31hat(6;n,k) is summed over those k numerating partitions with fixed number of parts m one obtains the unsigned triangle S1hat(6):= A145357.
FORMULA
a(n,k) = product(|S1(6;j,1)|^e(n,k,j),j=1..n) with |S1(6;n,1)| = A049374(n,1) = A001725(n+4) = [1,6,42,336,3024,30240,332640,...] = (n+4)!/5!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
EXAMPLE
[1];[6,1];[42,6,1];[336,42,36,6,1];[3024,336,252,42,36,6,1];...
a(4,3)= 36 = |S1(6;2,1)|^2. The relevant partition of 4 is (2^2).
CROSSREFS
Cf. A145358 (row sums).
Cf. A144890 (M31hat(5) array), A145357 (S1hat(6)).
Sequence in context: A145927 A113365 A293172 * A145357 A035529 A135893
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang Oct 17 2008, Oct 28 2008
STATUS
approved