login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145355
a(n) = round(round(sqrt(n!)/abs(round(sqrt(n!))^2 - n!))).
1
1, 1, 5, 11, 3, 71, 2, 1, 8, 20, 5, 1, 2, 5, 1, 2, 2, 1, 1, 3, 1, 1, 8, 2, 13, 22, 1, 1, 3, 2, 2, 3, 2, 2, 1, 2, 3, 2, 3, 1, 9, 2, 2, 1, 2, 1, 1, 2, 2, 1, 6, 1, 1, 4, 2, 2, 2, 3, 21, 2, 1, 1, 1, 1, 2, 2, 6, 8, 4, 7, 1, 2, 2, 1, 3, 1, 1, 9, 2, 1, 2, 4, 3, 5, 1, 1, 2, 5, 13, 6
OFFSET
2,3
COMMENTS
This sequence suggests that the distance between a factorial and the closest power is tightly bounded. Generated by Ed Pegg Jr in response to three Alexander R. Povolotsky conjectures: 1)n! + n^2 != m^2 (except for trivial case with n=0, m=1) per conducted calculations doesn't yield any solutions from n=1 to n= 200,000 2)n! + Sum(j^2, j=1, j=n) != m^2 per conducted calculations doesn't yield any solutions from n=1 to n= 2,000,000 3)n! + prime(n) != m^k is too difficult to cover by exhaustive calculations ...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..10000
PROG
(PARI) a(n)=my(s=round(sqrt(n!))); s\/abs(s^2-n!) \\ Charles R Greathouse IV, Dec 20 2011
CROSSREFS
Sequence in context: A066461 A351654 A117069 * A351338 A110353 A377050
KEYWORD
nonn
AUTHOR
STATUS
approved