The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145337 a(n) = d(p(n)+1) - d(p(n)-1), where d(m) = the number of divisors of m, p(n) = the n-th prime. 3
 1, 1, 1, 0, 2, -2, 1, 0, 4, 2, -2, -5, 0, -2, 6, 2, 8, -8, -2, 4, -8, 2, 8, 4, -6, -1, 0, 8, -4, -2, -4, 4, 0, 4, 6, -4, -8, -4, 12, 2, 14, -10, 6, -10, 3, 0, -10, 4, 8, -4, 4, 12, -14, 10, -1, 12, 10, -6, -8, -8, -2, 6, 0, 8, -12, 2, -10, -14, 8, 0, -4, 20, 2, -4, -4, 12, 10, -14, -7, -8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A008329(n) - A008328(n). - R. J. Mathar, Oct 10 2008 MAPLE A000005 := proc(n) numtheory[tau](n) ; end: A008328 := proc(n) A000005(ithprime(n)-1) ; end: A008329 := proc(n) A000005(ithprime(n)+1) ; end: A145337 := proc(n) A008329(n)-A008328(n) ; end: # R. J. Mathar, Oct 10 2008 MATHEMATICA DivisorSigma[0, #+1]-DivisorSigma[0, #-1]&/@Prime[Range[80]] (* Harvey P. Dale, Nov 01 2011 *) CROSSREFS Cf. A008328, A008329, A067889, A103664, A103665, A145338. Sequence in context: A349373 A144912 A306708 * A171941 A071464 A071510 Adjacent sequences:  A145334 A145335 A145336 * A145338 A145339 A145340 KEYWORD sign AUTHOR Leroy Quet, Oct 08 2008 EXTENSIONS More terms from R. J. Mathar and Ray Chandler, Oct 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:25 EST 2021. Contains 349567 sequences. (Running on oeis4.)