|
|
A008328
|
|
Number of divisors of prime(n)-1.
|
|
13
|
|
|
1, 2, 3, 4, 4, 6, 5, 6, 4, 6, 8, 9, 8, 8, 4, 6, 4, 12, 8, 8, 12, 8, 4, 8, 12, 9, 8, 4, 12, 10, 12, 8, 8, 8, 6, 12, 12, 10, 4, 6, 4, 18, 8, 14, 9, 12, 16, 8, 4, 12, 8, 8, 20, 8, 9, 4, 6, 16, 12, 16, 8, 6, 12, 8, 16, 6, 16, 20, 4, 12, 12, 4, 8, 12, 16, 4, 6, 18, 15, 16, 8, 24, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also the number of irreducible factors of Phi(p,x)-1, for cyclotomic polynomial Phi(p,x) and prime p. The formula is Phi(p,x)-1 = x*Product_{n>1, n|p-1} Phi(n,x). - T. D. Noe, Oct 17 2003
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
|
|
FORMULA
|
a(n) = A000005(A006093(n)) = A066800(prime(n)). - R. J. Mathar, Oct 01 2017
|
|
MAPLE
|
for i from 1 to 500 do if isprime(i) then print(tau(i-1)); fi; od;
A008328 := proc(n)
numtheory[tau](ithprime(n)-1) ;
end proc: # R. J. Mathar, Oct 30 2015
|
|
MATHEMATICA
|
DivisorSigma[0, #-1]&/@Prime[Range[90]] (* Harvey P. Dale, Dec 08 2011 *)
|
|
PROG
|
(PARI) a(n) = numdiv(prime(n)-1); \\ Michel Marcus, Feb 25 2021
|
|
CROSSREFS
|
Cf. A000005, A006093, A066800.
Sequence in context: A008329 A064558 A178031 * A298933 A091860 A333995
Adjacent sequences: A008325 A008326 A008327 * A008329 A008330 A008331
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|