OFFSET
0,2
COMMENTS
The next term is 2^^5 = 2^2^2^2^2 = 2^65536.
This is a computable function that is not primitive recursive.
The sequence defined in [Boolos] satisfies B(m,n)=A(m+1,n) for positive m,n.
REFERENCES
R. Peter, Rekursive Funktionen in der Komputer-Theorie. Budapest: Akad. Kiado, 1951.
LINKS
W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
G. Boolos, A curious inference, Journal of Philosophical Logic 16 (1987), 1-12.
R. C. Buck, Mathematical induction and recursive definitions, Amer. Math. Monthly, 70 (1963), 128-135.
Eric Weisstein's World of Mathematics, Ackermann function.
Wikipedia, Ackermann function.
FORMULA
T(n,0) = 1 if n>=3.
T(n,1) = 2 if n>=2.
T(n,2) = 4 if n>=1.
T(1,n) = 2+n.
T(2,n) = 2*n.
T(3,n) = 2^n.
T(4,n) = 2^^n (a power tower of n two's) = A014221(n+1).
CROSSREFS
KEYWORD
AUTHOR
Benoit Jubin, Sep 01 2008
STATUS
approved